
Page 1

About this document
This document is a complilation of ideas and opinions from internal team members and the TA com-
munity. Scribes such as myself has translated ideas into more foreseeable designs and explainations.

The workings behind this document are that it is made public and people everybody is allowed to say
what they like about anything in it. If there is a positive motion by several people to get something
changed it can be, usually you will have to start a thread on the forum to prove this. New suggestions
can go in here as long as they are proved popular by the public in the same manner.

If you think you can better explain something written in here email me (ole_v2@dsl.pipex.com)

The purpose of this document is to provide all members, especially new ones, with the nessarily infor-
mation to start work as soon as possible.

- Godevac Leadership | Ole

Contents

Introduction
- Team Members
- Policies

Gameplay: Basis
- Two teams
- Metal and Energy
- Interface and Scripting
- Rules
- Game Modes
- Plot
- Rejects and Opens

Program: Engine
- Introduction
- Maps

- Renderer
- Editor
- Scalability

- Units
- Unit and Weapon Definition Files
- Collisions

- Animation/Explosions
- Orders and Movement
- Statistical Processing

- File System
- Format Support
- Audio
- Visual
- Compression
- Interface

- In-game
- Game Launching Menus

- Rejects and Opens

Art: Units
- Harm Style (including skin)
- Idus Style (including skin)
- Original TA
- Units

Gameplay: Unit Stat Tables
- Generalization of Maul
- Generalization of Idus
- Harm tables
- Idus tables
- Rejects and Opens

Art: Maps
- Tilesets

- Desert
- Earth City
- Alien City
- Ice world

- Features for each Tileset
- Rejects and Opens

Art: Music Style

Gameplay: Features
- Interface
- Weapons and Collisions
- Rejects and Opens

Items of Reference:

Art mailing list:
godevac@smartgroups.com
http://www.smartgroups.com/group/group.cfm?GID=2089986

Programming mailing list:
godevacprogramming@smartgroups.com
http://www.smartgroups.com/group/group.cfm?GID=2367170

Offical Website
www.godevac.de.vu

Offical Forums:
http://www.tauniverse.com/forum/forumdisplay.php?s=&
forumid=85

Ole

Page 2

Policies
 - Communication

Team communication works through the TAU forum.

Announcements of importance affecting the entire
team or for attention to be drawn to the forum are
done through the Smartgroups mailing list. There are to
mailing lists, one for the programmings team and one
for the art based team. Any art based member can
make an announcement using Smartgroups by sending
mail godevac@smartgroups.com and any programmer
can make announcements by emailing godevacpro-
gramming@smartgroups.com please be aware that
everyone in the group will receive such emails.

Smartgroups provides 20megs of webspace for pic-
tures, an additional 20meg for general files, calender
and bookmark storage which the entire team shares
and has access to. Go to the group home page
http://www.smartgroups.com/group/group.cfm?GID=2
089986 ant login To access this.

What this document does and how it should be used is
at the very top on the first page and if you haven’t
read it you should. Go now, read!

- Outside world

The Godevac website can be found at www.gode-
vac.de.vu, Sash is the webmaster and responible for
new mediacontent while I make the majority of the
new postings. Godevac is an open-source project so
we try to make as much of our work as possible public.

Godevac has an entirely public forum which anyone
can read or post on. 3rd party contribution is allowed
and encouraged. Work is published as it is completed,
Alphas are released. Components parts should be
released separately on occasion.

The idea behind this it so receive public feedback at all
stages and allow other people input in more than just a
suggestive basis. Allowing anyone who thinks they can
help to just submit something and have the chance of
it being included.

The member initialization process is relatively simple, as
our discussion forum is public anyway all external mem-
bers of the public have to do is to get to know us and
submit something of benefitical to the group. An official
member is defined as someone on the Smartgroups
member list.

Name Position Email Msn
Sash Webmaster nebuchadneza@gmx.net
Goliat Modelling goliat@darkabyss.de goliatskipson@uni.de

oLE Leader, Music, Sound FX ole_v2@dsl.pipex.com *

caydr modeler
krackers87 modeler krackers87@hades-combine.com

me22 programmer/fmod implamentation me22@fastmail.ca *
drvali programmer drvali@hotmail.com *
pewee programmer
pavlo Lead programmer pavlo@liana.com.ua a2free@hotmail.com

neutron concept artist/designer n3utr0n@hotmail.com *
Eightball Maniac scribe/plot writing eightball_maniac@hotmail.com *
Stinky Sheep modeler stinkysheep@hotmail.com

Yoyobuae programmer supersayoyin@hotmail.com

Xiphias Temp Scribe neversnake@cwazy.co.uk

Introduction

Team Members

Page 3

- Rules

There aren’t too many rules to Godevac, just to be nice
to fellow members. Some members would request that
you only use the Smartgroups mailing list occasionally
and general discussion is meant to be conducted in
the TAU forums.

- Work

This is a voluntry organization so we can’t force you to
work. Remember you joined because you had a gen-
uine interest and wanted to contribute.

Job assignment is based on an informal agreement
between you and me. Its best if you can stick to the
agreement but if you need to change it for whatever
reason it is your responiblity to email me.

- Quality Control

The team should give criticism as often as possible.
Keep it constructive and frequent. Please appreciate
that there are people not as good as you are and
you’d do well to assist those people.

All work made is published provided:
a) the author would like it published
b) there are no serious technical faults
c) it fits with the Godevac designs and prinicples
d) it is compatible with the rest of the Godevac code
e) it is up to your personal standard
f) you’ve made as least one attempt at altering it
according to criticism you’re received.

Despite the number of points there this really isn’t diffi-
cult to do, if your work does the job and you’ve tried
your best your in; basicaly.

Gameplay: Basics

The choices I’ve made here are designed to preserve
or expand upon the features of TA that we loved whilst
fixing some of the disliked features and adding some. If
you have an idea for this section please read the
rejects and opens before you submit it, otherwise you
are wasting your time.

Two Teams

Godevac will have two teams. TA had 2 teams and
that offered more than enough scope.

The two teams are Idus and Maul, The names are
designed to sound that little bit darker than Arm and
Core. Both teams will appear to be robotic.

Metal and Energy

Construction and the Metal/Energy system are the
same as in OTA you do not need to read on if you are
familiar with it.

The construction of any unit requires an amount of
metal and energy. Typically units built for better durabil-
ity have a more expensive metal cost while units that
require more complex manufacture methods will have
greater energy costs.

The purposes of the metal and energy system is to chal-
lenge the player to maintain a balance between the 2
resources. Building a unit causes a continuous and un-
varing drain on metal and energy that is spread out
over the time that the unit takes to be built.

Metal can be obtained by reclaimation and or deposit
extraction. Reclaimation is the process of converting
metalitic material into an easily storable form, it doesn't
take very long to perform and can provide large bursts
of metal but is not reliable because it is dependent on
large quanities or metal to be lying around for the tak-
ing and you giving the orders to reclaim them. The
choice method of obtaining metal is desposit extrac-
tion which is where structures are built over metal
despoits in the ground, these structures (metal extrac-
tors) bore into the despoits and provide an undieing
and reliable source of metal.

This way a unit costing 10,000 metal can be built even
when your stores are low because your consistant
income is offset against your consistant outgoingings.

Energy production works in very similar way and can be
offset in the same fashion. Organic material can be
reclaimed for energy and Solar panel and tidal genera-
tors (and many more desides) can be used to provide
constant sources of energy income.

Godevac is going to stick to the standard production
methods used by TA. Construction units will build build-
ing and factories and labs will build mobile units.
Constructions units have nathlathe lasers which reclaim,
repair and bulid units.

Page 4

Interface and Script

Interface Preview Picture

This an example of the ingame interface, a lot of the
point and click actions will be identicial to that of OTA
this outlines most of the new. The big arrow in the cen-
tre of the image indicates a mouse dragging action.

Interface items to be added to this section
- Statistic View
- Unitopedia View
- Allegencences Dialouge
- Share Dialouge
- Configuration Dialouge
- Unit Defaults Dialouge
- Formation Editor
- Working model made in VB where you’ll be able to

click things are try stuff out.

Modifications going to be made to this design:
- Metal and Energy on order bar instead of manage
- Make all windows compactable
- Resizeable corners
- Unit pics in the combined build menu for realism

- Replace cyptic a/h/s stuff with real names.
- New menu ‘Floaters’ allows you to toggle floating win-
dows on and off and create copies.
- F1throught 4 movers.
- F5 compact and uncompact
- F6 display/hide menu for selected unti.
- Snapping to edges

Page 1

Script

Scripting (in this case) is the act of giving a unit com-
mands. Just like waypoint but with the critical differ-
ence that it is code driven.

From now on the word maploc refers to an XY location
on the map e.g. 355:657
‘,’ separates commands in groups of commands.
‘;’ terminates a command.

Interpreter error messages:
1. Unknown command
2. Bad Syntax (correct syntax is displayed)
3. Incorrect commas or bracket placement
4. Unit can’t perform that command
5. Map location is outside of map
6. Unit does not exist
7. Ambigious unit name
8. Not enough data. (no opperand)
9. You cannot specify a map location here
9. You cannot specify a unit name
10. You must specify a side
11. That side does not exist
12. Can’t build there.

Run-time error messages:
1. I Can’t get there
2. My target location is blocked
3. Hostile action prevented me from performing
4. Cannot build any more units, you’ve hit the maxi-
mum
5. Cannot load any more units.
6. No units to unload
7. Unit no longer exists.
8. That side no longer exists.

Commands: (I thought I’d use pink :P)
__

Long-hand: patrol...until
Short hand: pat...utl

Purpose:
The patrol command is used automate movement, the unit follows a
series of movment points continously repeating any other command as
its required in the game environment. As you would expect the
maplocs can be filled in with clicks. Think of patrol as a loop.

Syntax:
patrol(maploc1,maploc2,etc)(command1,command2,etc)(range)
until(condition);

Example:

patrol(24543:5432,25642:5464,27642:5464)(repair,reclaim)(500) until
(me<50%);

This would cause the unit patrol from in a triangluar fashion stopping to
repair any repairables and reclaim any reclaimables within a 500 point
radius of its path. It will not repair or reclaim outside its range even it
moves outside the range after its started. As long as its health is greater
than 50% it will patrol.

patrol(load)(2000);

This would cause the unit to stand still and execute a load command to
anything loadable within 2000. Notice there is no until, which is allowed.
__

Long-hand: attack
Short-hand: atk

Purpose: Well there wouldn’t be much point in Godevac without
attacking now would there? The unit and side can be automatically
filled in by clicking a unit to attack.

Syntax:
attack(side name or color,unit);

Example:
attack(blue,ak4);
Will cause unit to attack one ak from the blue team

attack(ole,commander1);
Will cause unit to attack the commander of the team called ole. nooo!
__

Long-hand: move
Short-hand: mov

Purpose: Moves units about, only units that can move mind. In the
case of factories it performs a park function, where all the units built by
the faction go to the maploc, this was in OTA. Also as you can see you
can string multiple maplocs together with this command.

Syntax:
move(maploc or unitname);

Example:
move(24543:5432);
move unit to 24543:5432.

move(commander1);
unit will move to the commander on own side.
__

Long-hand: stop
Short-hand: stop

Purpose:
Terminates any command that is executing.

Page 1

Syntax:
stop;

Example:
stop;
simple and classic, but pretty useless in a script.
__

Long-hand: guard..until
Short-hand: grd..utl

Purpose:
Make any unit follow and assist another. If the unit has weapons and is
set to assault mode it may attempt to engage units attacking the
guardee.

Syntax:
guard(unitname)until(condition);

Example:
guard(commander1)until(commander1=100%);
Unit will follow and assist the comander as long as the commander’s
health is not 100%.

guard(peewee13);
As long as Godevac doesn’t crash peewee13 will be guarded.

guard(conkbot3)until(conkbot=idle);
As long as construction kbot is not idle it will be guarded.

guard(me);
illegal command you can’t guard yourself.

__

Long-hand: set
Short-hand: set

Purpose:
Sets the properties and behaviour of a unit.

Syntax:
set(item = value);

Example:
set(notify_bored = 1);
Unit will from now on notify if it gets bored.

Items and their values:
notify_bored = boolean;
notify_idle = boolean;
only a single binary ‘1’ to share between these: assualt,defensive,pas-
sive,stealth. only for units with weapons.
boredom_time = integer; sets the amount of time it takes a unit to get
bored.
__

Long-hand: load
Short-hand: ld

Purpose:
Orders transport units to load units to be transported. You can load
units from any team.

Syntax:
load(teamname or color,mobile unitname);

Example:
load(blue,jethro3);
Unit will load the jethro from the blue team.

load(245:145);
illegal command

load(commander1);
illegal command. No side specified
__

Long-hand: unload
Short-hand: uld

Purpose:
Orders transport units to unload units to a location.

Syntax:
unload(maploc);

Example:
unload(2424:1235);
Unloads the next unit in the stack to 2424:1235.

unload(commander1);
illegal command. a location is specified not a unit.
__

Long-hand: repair
Short-hand: rep

Purpose:
Repairs damaged units.

Syntax:
repair(unitname);

Example:
repair(bobmech1);
Repairs bobmech1 on your own side.

repair(red,bobmech1);
illegal command.
__

Long-hand: reclaim

Page 1

Short-hand: rec

Purpose:
Absorb the lovely metal or energy goodness from things.

Syntax:
reclaim(teamname or color,unitname);
reclaim(featurename);

Example:
reclaim(green,kbotlab2);
Reclaims the Kbotlab on the green side

reclaim(423);
Reclaims feature number 423.

reclaim(blue,423);
illegal command.
__

Long-hand: assist
Short-hand: ast

Purpose:
Orders a construction unit to assist with building an incomplete unit. The
command terminates once the unit has been built. You can assist allys
with building.

Syntax:
assist(side,incomplete unitname);

Example:
assist(blue,fido5);
Assists with the construction of fido5.
__

Long-hand: build
Short-hand: bld

Purpose:
Orders a construction unit or factory to start building a new unit. No
number need be specified in the unit to build.

Syntax:
construction unit: build(unit to build,maploc);
factory: build(unit to build);

Example:
build(fusgen,253:546);
Construction unit builds a fusion generator at maploc 253:546.

build(ak);
factory build an ak.

build(ak,2465:134);
illegal command
__

Long-hand: wait..until

Short-hand: wt..utl

Purpose:
As long as the condition is not met or minutes have not expired the unit
stands idle and doesn’t notify of idleness or boredom during this period.

Syntax:
wait(minutes)until(condition)

Example:
wait(5);
As long as unit hasn’t been waiting five minutes it waits.

wait until(me < 100%);
As long as it isn’t damaged it waits.

wait;
waits forever. This is the say as having no code in the script.

wait(10)until(metallevel<10%);
As long as unit hasn’t been waiting ten minunte or metal level drops
below 10%, unit waits.
__

Long-hand: if
Short-hand: if

Purpose:
If is the only command that cannot be performed using the game inter-
face. It executes other orders dependent on a condition.

Syntax:
if(condition)command;
condition are made of (unit operator value)

Example:
if(blue,commander1<20%)guard(commander1);
if the commander’s health is below 20% at point of if’s execution guard
the commander.

if(metallevel>1000)build(fusion,432:562);
if the variable metallevel is greater than 1000 at point of if’s execution
guard build a fusion.

__

Long-hand: loopif
Short-hand: lpif

Purpose:
Same as an if command only the condition is continuously checked
while the unit is idle.

__

Operators:
First I have better just say that we are going to be using
these operators:
< - less than

Page 1

> - greater than
= - equal to
!= - not equal to
% - indicates a reference to health

there’ll be no need for + - * / operators and bracket
won’t be allowed as they are purely for syntaxal pur-
poses.

Global Environment Variables:
metallevel - current amount of metal in storage
energylevel - current amount of metal in storage
metalin - current amount production
metalout - current metal drain
energyin - current amount production
energyout - current metal drain

Thinggies that return a value:
me - unit being scripted
damaged - see if command below
underattack - ditto
idle - ditto
bored - ditto

Page 1

Game Modes

This section will explain the working used for multiplayer,
skirmish and campign.

Single Player Campaign

blah

Skirmish and Mutliplayer

Begin by specifing your team or player name, this can-

not have any commas or semi-colon in it (because of
the use of commas and semi-colons in the script).

In skirmish mode you will be able to use many teams,
perhaps 20. Each team can then be assigned to a con-
troler, such as an AI or human player. The point is that
any single controller can be assigned to many teams
and therefore control bases on several areas of the
map.

The more teams a controller is assigned to the larger ini-
tal metal and energy storage he is given but all his

Unit Category Hierarchy

Structures

Energy Metal Unit Radar Defensive

Generators Storage

Generators Storage

Production Repair

Generating Jamming

Light Medium Heavy

Kbots Vehicles Airplanes Sea

Kbots Vehicles Airplanes Sea

Subs SeaplanesShips

Hovercraft

Hovercraft

Subs SeaplanesShips

Maul Idus

Tech Level 2 Tech Level 3

Construction Units

Broken down further

Not elaborated, can be assumed

Tech Level 1

Attacking Units

Rules

This section in time will come to explain the reasoning and structure behind a single game of Godevac as well as
an overview of unit roles. See the first in this section a Unit Hierarchy Document, yes I know it looks a bit crappy,
unfortunately Freehand was playing up that day so I had to use Powerpoint.

Page 1

teams will share off that single storage.

Plot

Game plot - who Idus and Maul are, where they came
from, why they are so pissed off with each other. etc.
Eightball Maniac will be writing this a bit later.

Rejects and Opens
-Opens

Should a third race be included later?

- Rejects

Metal desposits run out after a period of time.

Page 1

Program: Engine

Introduction

Following me22 telling me that the programming team
has no idea what to do I have produced a early
incomplete engine section. This section will explain
what will be required from the engine.

Please comment on the information here because its
quite obviously far from perfect.

Maps

Renderer

OpenGL. agreed. There a debate going on right now
about whether we’ll making it 2.1D or 3D. My opinion is
to go with full 3D, however if someone here know how
to make a 2.1D straight away then that is what must be
done.

Besides this I think everyone is in agreement that
Terragen made maps are the only way forward, so its
going to have to be capable of:
- Large, high resolution, 24-bit base texture
- Colored lighting from moving or static objects affect-

ing map surface
- Smoke particle systems
- Water reflection system
- Deformable terrain
- Destorable and animating features (ideally in 3D)
- Separate heightmap file

Editor/Map definition file

As the maps are going to be created in Terragen all
the editor will need to do is:
- Initial processing
- Set map properties (water height type stuff)
- Provide tools for making a single player campaign
- Heightmap editing tools
- Choose allowed and disallowed units.
- Specify unit scripting

Scalability

I think the entirely of the engine code should be
designed on the basis that there will be large volumes
of data to process. So that 0xFFFF unique weapons and
units can be made.

Units

Unit and Weapon Definition Files

See here

These should work as a ascii editable files. Unless that is
going to reduce performance.

When a unit is built it is given a name similar to ‘Bertha1’
this is important because it will be referred to in the
scripts that the user writes. Its up to you programmers to
decide if each unit is automatically allocated a num-
ber and a string name or just a string name.

Collisions

Basic rectangular collision masks, low processing
requirement good for lots of units. Units won’t collide as
much though we hope because of better path finding.

Animation/Explosions

As much the same as OTA as possible, perhaps wreak-
ages could burn a bit more.

Orders and Movement

- Acceleration/Deceleration rates and max speed
- Units react to map slopes
- Mounted cannons move
- Projectiles rise and fall
- Lines and symbols are printed on the game to indi-

cate orders. Building plans appear as transparent build-
ings.

Statistical Processing

- Different build rates
- Different metal/energy drains and supply rates
- Different weapon strengths, fire rates.

File System

Godevac
Engine
Interface Skins
Units

Animations
3DOs
Unitpics

Maps

Page 1

Music
Weapons
Features
Docs
Source
Sounds

Weapons
Units
Ambience
Interface

Format Support

Audio

FMOD will do nicely

Visual

In thinking PNG (lossless compression) for map
3D0 if we want to use existing TA units. MDL has quite a
following too.

Compression

The large map will have to be compressed although I
agree with me22 that this should come later, for now
we can rar everything up for internet transmision.

Interface

In-game

- Skinned interface
- Buttons, pointers,
- transparent lines and indicators
- Animating symbols
- Build Pics

Game Launching Menus

- Standard windows interface for specifying a game.

Rejects and Opens

Rejects

to be filled

Opens

2.1D or fully 3D maps?
What else is wrong with this lot?

If we can’t make our own engine I am making enquires
into an existing engine not well recognised, it was used
for Rage Software’s Incoming if you’ve heard of that, it
features tanks, airplanes and vehicles on a fully 3D tex-
tures landscape and was famed for its explosions.

Otherwise the Unreal Warfare engine will be up to the
job of RTS, if we opt for this it would mean the death of
Godevac and everybody moving over to the Unreal
Annihilation Project

Page 1

Unit Definitions

me22 made these unit definition files.

/***********************************

Godevac Unit Definition File Description
Maintainer: me22 <me22@fastmail.ca>
Revision 1.0: 16/03/2004

— Key —

/* Comment */: no nesting; only between semicolon and next tag
“string”: double quotes MUST be included
integer: possible relational operators for constraints
float: constraints possible here too
boolean: 1=true, 0=false
One|of|these|tags: Single Flag
Any&Number&of&these&flags: Whitespace separated flags

Note: Name = Value pairs are separated with ;
Note: a line can begin and end with arbitrary whitespace
Note: whitespace is any amount of a common whitespace character, including \n
Note: file radical is filename without extension
Note: filename radical is same for unit, model, script, and etc files,
which is what is mentioned in the built_by files.
Note: all distances in meters, all times in seconds

***********************************/

Info_Version = Lowest Compatible Version >= 0;
Info_Revision = File Version >= 0; /* For Mod Overloading */
Info_Name = “Unit Name”;
Info_Desc = “Unit Description”;
Info_Level = Build Tree Tier >= 0;
/* 0: Com Buildable
1: Lvl 1 Factory Buildable
2: Lvl 1 Builder Buildable
n: etc */
Info_Type = RESOURCE|FACTORY|BUILDER|ATTACK|SENSOR
Y|SPECIAL;

Info_Role = PASSIVE|ANTI|LR|ARTY|AA|DIRECT|MELEE;
Info_Group = GENERIC|KBOT|TANK|AIR|SEA|COMBO;
Info_Power = WEAK|LOW|MEDIUM|HIGH|INSANE; /* Generic strength for type.
For example Weapon Damage, Radar Range, or Build Speed. */
/* All the above stuff can be used by the AI and to make
the build menus coherant w/o GUIs or download tdfs */

Model_X = X bounding box dimention;
Model_Y = Y bounding box dimention;

Page 1

Model_Footprint = “TA-Style footprint string”; /* format TBA */

Cost_Metal = Metal Cost >= 0;
Cost_Energy = Energy Cost >= 0;
Cost_Time = Build Time With 100-Strength Builder > 0;

Move_Speed = Maximum Speed >= 0;
Move_Accel = Time To Full Speed From Rest > 0;
Move_Brake = Time To Stop From Full Speed > 0;
Move_Turn = Time To Complete A 360 Degree Rotation > 0;
Move_Leash = Movement Freedom >= 0;
Move_Climb = 0 <= Maximum Traversable Upward Slope >= 256;
Move_Slide = -256 <= Maximum Traversable Downward Slope >= 0;
/* So you can let units jump off cliffs if if you want */
/* Building locations must satisfy both criteria */
Move_Low = -256 <= Deepest Possible Location <= 256;
Move_High = -256 <= Hightest Possible Location <= 256;
/* 0 is water level; Move_High for planes/hovers is the
flight altitude above ground level */
/* If Move_Low is 256, the plane wont land */
/* Only planes can be built below Stats_Low, although not
below water unless Stats_Low < 0 */

Stats_HP = Hitpoints > 0;
Stats_Sight = LoS Radius > 0;
Stats_Build = 0 <= Build Rate <= 500;
Stats_Rader = Radar Radius >= 0;
Stats_RaderJam = Radar Jamming Radius >= 0;
Stats_Sonar = Sonar Radius >= 0;
Stats_SonarJam = Sonar Jamming Radius >= 0;
Stats_Cloak = Cloak Radius >= 0;
Stats_Stealth = Stealth Radius >= 0;
/* If 0 is allowed, then 0 means that the Unit does not have the feature */

Resources_Tidal = 0 <= Tidal Efficiency <= 100;
Resources_Wind = 0 <= Wind Efficiency <= 100;
Resources_Mex = 0 <= Extractor Efficiency <= 100;

Resources_MStore = Metal Storage >= 0;
Resources_EStore = Energy Storage >= 0;
Resources_MIdle = Metal Use When Idle;
Resources_EIdle = Energy Use When Idle;
Resources_MActive = Metal Use When Active;
Resources_EActive = Energy Use When Active;

Weapon_Primary = “Main Weapon File Radical”; /* Script ID 1 */
Weapon_Special = “Special Weapon File Radical”; /* Script ID 0 */
Weapon_2 < Script Weapon ID < 10 = “Additional Weapon File Radicals”;
/* Primary determines attack range, chase targets, etc
2-9 must be specifically activated by a script
Special is the DGun-style button that never auto-attacks */

FX_Killed = “On-Killed Weapon File Radical”;
FX_SelfD = “On-Self-Destruct Weapon File Radical”;

Page 1

FX_Corpse = “Corpse File Radical”;
FX_Sound = “Sound Class Definition File Radical”;

Notify_Idle = Notify When Out Of Orders;
Notify_Success = Notify Upon Successfully Acheiving A Waypoint;
Notify_Failure = Notify If Waypoint Impossible or Interrupted;
Notify_Critical = Notify Once Health Reaches “Red” Zone;
Notify_Attacked = Notify After Taking Damage;

/***********************************

— Notes on things NOT included —

Side (int): If you can build it, I don’t care what side it thinks it is
Fixed (bool): If you can’t move, I’ll assume you’re fixed
Canbuild (bool): If your Stats_Build is 0, I’ll assume you can’t build
canstealth (bool): Uses Stats_Stealth, see note above
UnitNumber (int): Dynamically allocated
Behavior (string array): Inferred from Info_* tags
Notify.bored (bool): Ambiguous
shootme (bool): Illogical. +shootme will be replaced with something that
lets you pick categories for your units to auto-attack
cruisealt (int): Incorporated into Move_High
nochasecategory (filename): Inferred by weapon information and Info_* Tags
stealthcost (int): Resources_(M|E)Idle
stealthcost.moving (int): Resources_(M|E)Active

/ **

Godevac Unit Definition File Examples
Maintainer: me22 <me22@fastmail.ca>

Revision 1.0: 20/03/2004

**
****************************/

/***** units/arm_mexx.info *****/

/* This one defines everything explicitly */

Info_Version = 0;
Info_Revision = 0;
Info_Name = "Mexx";
Info_Desc = "Metal Extractor";
Info_Level = 0;
Info_Type = RESOURCE;
Info_Role = PASSIVE;
Info_Group = RESOURCE;
Info_Power = WEAK;

Page 1

Model_X = 32;
Model_Y = 32;
Model_Footprint = "(Dunno Yet)"; /* format TBA */

Cost_Metal = 10;
Cost_Energy = 1000;
Cost_Time = 3.7;

Move_Speed = 0;
Move_Accel = 0;
Move_Brake = 0;
Move_Turn = 0;
Move_Leash = 0;
Move_Climb = 32;
Move_Slide = 32;
Move_Low = 0;
Move_High = 256;

Stats_HP = 100;
Stats_Sight = 300;
Stats_Build = 0;
Stats_Rader = 0;
Stats_RaderJam = 0;
Stats_Sonar = 0;
Stats_SonarJam = 0;
Stats_Cloak = 0
Stats_Stealth = 0;

Resources_Tidal = 0;
Resources_Wind = 0;
Resources_Mex = 10;

Resources_MStore = 100;
Resources_EStore = 0;
Resources_MIdle = 0;
Resources_EIdle = 0;
Resources_MActive = 0; /* Metal Comes From
Resources_Mex */
Resources_EActive = 3;

/* No Weapons, So Commented Out *
Weapon_Primary = "Main Weapon File Radical"; /* Script
ID 1 */
Weapon_Special = "Special Weapon File Radical"; /*
Script ID 0 */
Weapon_{2 < Script Weapon ID < 10** = "Additional
Weapon File Radicals";
*/

FX_Killed = "small_die";
FX_SelfD = "small_selfd";
FX_Corpse = "arm_mexx";

FX_Sound = "mexx";

/***** units/arm_bertha.info *****/

/* This one only includes those tags that need something
other than default */

Info_Version = 0;
Info_Revision = 0;
Info_Name = "Big Bertha";
Info_Desc = "Long-Range Plasma Cannon";
Info_Level = 6;
Info_Type = ATTACK;
Info_Role = LR;
Info_Group = GENERIC;
Info_Power = HIGH;

Model_X = 32;
Model_Y = 32;
Model_Footprint = "(Dunno Yet)";

Cost_Metal = 2222;
Cost_Energy = 567000;
Cost_Time = 62.7;

Move_Climb = 8;
Move_Slide = 8;
Move_Low = 0;
Move_High = 256;

Stats_HP = 0;
Stats_Sight = 400;

Weapon_Primary = "arm_lrpc"; /* Script ID 1 */

FX_Killed = "big_die";
FX_SelfD = "big_selfd";
FX_Corpse = "arm_bertha";
FX_Sound = "lrpc";

